The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain.
نویسندگان
چکیده
Salinity affects large areas of agricultural land, and all major crop species are intolerant to high levels of sodium ions. The principal route for Na(+) uptake into plant cells remains to be identified. Non-selective ion channels and high-affinity potassium transporters have emerged as potential pathways for Na(+) entry. A third candidate for Na(+) transport into plant cells is a low-affinity cation transporter represented by the wheat protein LCT1, which is known to be permeable for a wide range of cations when expressed in yeast (Saccharomyces cerevisiae). To investigate the role of LCT1 in salt tolerance we have used the yeast strain G19, which is disrupted in the genes encoding Na(+) export pumps and as a result displays salt sensitivity comparable with wheat. After transformation with LCT1, G19 cells became hypersensitive to NaCl. We show that LCT1 expression results in a strong decrease of intracellular K(+)/Na(+) ratio in G19 cells due to the combined effect of enhanced Na(+) accumulation and loss of intracellular K(+). Na(+) uptake through LCT1 was inhibited by K(+) and Ca(2+) at high concentrations and the addition of these ions rescued growth of LCT1-transformed G19 on saline medium. LCT1 was also shown to mediate the uptake of Li(+) and Cs(+). Expression of two mutant LCT1 cDNAs with N-terminal truncations resulted in decreased Ca(2+) uptake and increased Na(+) tolerance compared with expression of the full-length LCT1. Our findings strongly suggest that LCT1 represents a molecular link between Ca(2+) and Na(+) uptake into plant cells.
منابع مشابه
The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast.
Nonessential metal ions such as cadmium are most likely transported across plant membranes via transporters for essential cations. To identify possible pathways for Cd2+ transport we tested putative plant cation transporters for Cd2+ uptake activity by expressing cDNAs in Saccharomyces cerevisiae and found that expression of one clone, LCT1, renders the growth of yeast more sensitive to cadmium...
متن کاملMolecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants.
The transport of cations across membranes in higher plants plays an essential role in many physiological processes including mineral nutrition, cell expansion, and the transduction of environmental signals. In higher plants the coordinated expression of transport mechanisms is essential for specialized cellular processes and for adaptation to variable environmental conditions. To understand the...
متن کاملبررسی توزیع یونی در بافت های مختلف ارقام متحمل و حساس به شوری گندم (.Triticum aestivum L)
An understanding of physiological mechanisms of salt tolerance is necessary for breeding programs, in order to select the desired trait in different wheat genotypes. Three bread wheat genotype differing in salt tolerance were employed to assess ion distribution and growth responses under saline conditions. To evaluate ion distribution in plant, sodium and potassium concentrations as well as K+/...
متن کاملRice cDNA Encoding PROLM is Capable of Rescuing Salt Sensitive Yeast Phenotypes G19 and Axt3K from Salt Stress
Rice seed expression (cDNA) library in the Lambda Zap 11® phage constructed from the developing grain 10-20 days after flowering was transformed into yeast for functional complementation assays in three salt sensitive yeast mutants S. cerevisiae strain CY162, G19 and Axt3K. Transformed cells of G19 and Axt3K with pYES vector with cDNA inserts showed enhance tolerance than those with empty pYes ...
متن کاملThe Effect of Priming and Salinity on Physiological and Chemical Characteristics of Wheat (Triticum aestivum L.)
In order to study of the effect of priming and salinity on physiological and chemical characteristics of wheat(Triticum aestivum L.), an experiment was carried out at the Experimental Farm of Shiraz University. Results showedthat primed plants significantly reduced its gas exchanges by accelerating senescence under a series of salt stress,which became more serious along with the increasing of s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 126 3 شماره
صفحات -
تاریخ انتشار 2001